

0.1-10 keV

15 keV-10 MeV

Simbol-X

A high energy astrophysics observatory

Focusing hard X-rays thanks to the formation flight technology

International collaboration Participating laboratories

F: CEA/Saclay, CESR/Toulouse, APC/Paris,

LAOG/Grenoble, Obs.Paris/Meudon

It: (INAF:) O.A.Brera, Roma, Palermo,

IASF Milano, Bologna

D: MPE Garching & I.A.A. Tübingen

 Conceived as an observatory, opened (in part) to the whole astrophysics community

Simbol-X: observing the High Energy Universe

High energy phenomena are major actors of the dynamics of the Universe, via injection of matter and energy...

from extragalactic...

... to Galactic scales

Scientific domain characterized by non-thermal emissions in X and γ rays, strongly variable for compact objects, often accompanied by thermal emission to disentangle

Main goals, questions, et targets

1. Accretion: physics and census

Questions: matter under extreme gravity and B field conditions, compact objects parameters determination (BH spin, mass, NS magnetic field), accretion power in the Universe

Targets: X-ray binaries, Ultra-Luminous X-ray sources, Galactic Centre, Active Galactic Nuclei, X-Ray Cosmic Background

2. Particle acceleration:

Question: acceleration processes limits, origin of cosmic rays

Targets: SNRs, pulsars, jets (AGN, microquasars), galaxy clusters

3. Nucleosynthesis

Question: how do star explode?

Targets: young supernovae remnants

Hard and Soft X-ray astrophysics

Large field of view instruments have unveiled the richness of the domain, but limitation in sensitivity, angular resolution, integration times, prevent going further...

Simbol-X: go beyond exploratory phase

Have the XMM angular resolution and sensitivity in the INTEGRAL/ISGRI energy range

The only way to go : focusing

How? Extend to the hard X-rays the successful "soft X-rays" technics, with very long focal length possible thanks to formation flight

30 m

Grazing incidence : $E_{\text{max}} \propto 1/\theta \propto \text{Focal Length}$

Accretion : solve the Galactic Centre enigma around SgrA*

An excess around the centre, but no identification of the origin...

The Galactic Centre with Simbol-X

Angular resolution: localize the sources

Sensitivity: measure SgrA* spectrum

Spectro-imaging: solve the diffuse X-ray emission enigma

Accretion in binary systems

In Milky Way

access to quiescence state, and follow and characterize the change of state (« ADAF » vs jets? Difference between neutron stars and black holes?)

Black hole demography
in outer Galaxies
First hard X-rays mapping of
binaries in local group

Caracterisation of ULX's, with potential mass determination via QPO's

Simbol-X

Cargese school

April 12, 2006

Accretion in SMBH: spectral variability & statistics

History of accretion: resolve the X-ray background

Record of Super Massive Black Holes history, with links to the stellar formation

About 50 % resolved in sources in the 7-10 keV band

But less than a few % resolved beyond 10 keV, at the emission peak!

Simbol-X: find out the obscured active galaxies

CXRB models: major contribution from obscured AGNs, but parametres are not constrained (evolution, energy cut-off, absorption)

To break the degeneracy, we must find the sources

Simbol-X will resolve from 35 to 65 % of the CXRB in the [20-40] keV band (20 sources per 1 Ms pointing, for 12 arcmin FOV)

Acceleration: in SNRs shocks

With Simbol-X: mapping of the synchrotron emission, determination of the maximum energy of the electrons, correlation with GeV and TeV emissions

Nucleosynthesis: looking for 44Ti emission

Simbol-X

Cargese school

April 12, 2006

Science requirements

Emin < 1 keV Emax > 50 keV, goal > 80 keV

 ΔE : 150 eV @ 6 keV (Fe K α)
1 keV @ 60 keV (⁴⁴Ti)

 $\Delta\theta$: < 30 arcsec, goal 15 arcsec FOV: 6 arcmin, goal 12 arcmin

 Δt : 1 ms, goal 50 microsecondes

Sensitivity: 10^{-8} ph/cm²/s/keV for E < 40 keV goal 80 keV 10^{-14} erg/cm²/s [20-40 keV] (1 μ Crab)

⇒ Large effective area, very low background, excellent angular resolution

Optics & coating

 Heritage from XMM-Newton: nickel shells obtained by electroforming replication method; low mass obtained via a reduced thickness of shells

Shell diameters: 290 to 600 mm

Angles: 0.07° to 0.142°

Shell thickness: 0.12 to 0.30 mm Number of shells: 100

Pt coating

Total mass: 213 kg

Same parameters except for coating, Pt/C multi layer Strong increase of response above 40 keV

Small increase of field of view: 7 arcmin

Optics, shorter focal length option

Strong increase of FOV and gain in plate scale, but less effective area above 25 keV

Phase A trade off with multi-layer possibility: maximise the field of view and/or the highest energy

The focal plane unit

Low energy detector (450 µm Silicon)

High energy detector (2 mm Cd(Zn)Te)

Active anticoincidence and passive shield

Basic starting parametres

- · Spectro-imaging system
- Pixel size ~ 500 μm (PSF oversampling)
- Full size : ~ 8×8 cm²
- · "Room temperature" operations
- · Fast reading (used in anticoincidence)

Low energy detector

Macro Pixel Detector with integrated DEPFET

- · Low power consumption
- Internal amplification
- Room temperature operations
- · Active Pixel Sensor type
- · 100 % filling factor
- · Adjustable pixel size (50 µm to 1 mm)
- · Fast, parallel readout possible

High Energy Detector: R&D CNES/CEA

 Tests of pixellated Cd(Zn)Te matrices

· ASICs development (IDeF-X Vx.x)

Diffuse X-ray Background baffling issue

Detector and Mirror Spacecrafts

One major point achieved in phase 0 : feasability of the background reduction

Mirror S/C with its sky shield

Simbol-X

Packing for launch

Single launch
Soyuz-Fregat from Kourou

Mission operations - orbit

· High elliptical orbit :

7 days period, and at launch:

perigee: 44,000 km

apogee: 253,000 km

inclination: 5 degrees

· Pointing perpendicular ± 20 deg to Sun

- S/C line

· 2 antennas on ground

• Oct. 21, 2005 : selection for phase A by CNES Science Program Committee (end of process from call for ideas issued in Dec 2003)

March 2006 - march 2007: joint CNES-ASI phase A

• Mid 2007 : decision for phase B (= go aheae for flight)

· more than 2 years of science, with > 1000 targets possible